مدل‌سازی شبکه‌های ترافیکی با استفاده از نظریه بازی‌ها و GIS
مسیریابی بهینه در محيط

پویا مجددیان۱، علیرضا وقایی نژاد۲

۱- کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده مهندسی زیست و
ترزی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
۲- استادیار مهندسی آب و محيط زیست، پردیس فنی مهندسی شهید عباسی، دانشگاه
شهید بهشتی، تهران، ایران

دریافت: ۹۸/۱۳۱۹ پذیرش: ۹۸/۱۳۱۹

چکیده
یکی از مهم‌ترین متغیرها در مدل‌سازی شبکه‌های ترافیکی، ترکم مسیرهای شبکه است. استفاده از
مدلی که با در نظر گرفتن ترکم شبکه و برخورداری از حساسیت لازم به تغییرات آن پویایی کاربران
شبکه را در تصمیم‌گیری - انتخاب بهترین مسیر - پایه رساند، سبب مدل‌سازی هرچه پهناور شبکه
ترافیکی می‌شود. در این تحقیق، نظریه بازی‌ها در مدل‌سازی مسائل گوناگون ازجمله
حمل و نقل و ترافیک، دارای قابلیت‌های فراوانی است. نظریه بازی‌ها با مدل‌سازی مسئله در قالب یک
بازی سعی در پایین‌رها و تحلیل آن دارد. به‌پایان دوگری، می‌توان آن را نظریه
تصمیم‌گیری دانست که بازی کننده‌اند را برای انتخاب تصمیم‌های بهینه پایبند می‌رسانند. در این تحقیق،
یک مدل بازی - براساس فرم نرمال - میان رانندگان حاضر در یک شبکه ترافیکی طراحی شده و با حل
و پایان تحلیل نش نش، مسیرهای بهینه و چگونگی برتری تعادل در شبکه ترافیکی
مشخص شده است. در ادامه، با توجه به نتایج بدست آمده از نظریه بازی‌ها و سیستم اطلاعات
جغرافیایی، بستری جهت تحلیل‌های شبکه، ازجمله مسیریابی بهینه فراهم شده است.تا این‌جا راه
تصمیم‌گیری گردیده نتیجه‌گیری در مدیریت و سامان‌دهی هرچه بهتر شبکه‌های ترافیکی به بهترین شکل
تصمیم‌گیری کنند.

واژه‌های کلیدی: شبکه‌های ترافیکی، نظریه بازی‌ها، سیستم اطلاعات جغرافیایی، مسیریابی بهینه.

Email: a_vafaei@sbu.ac.ir

نریستمی-پستال مقاله:
1. ترکم ترافیکی

ترکم ترافیکی یکی از جنبه‌های ناپایداری زندگی شهری، و در سرتاسر جهان مطرح است. افزایش سطح این ترکم در نواحی شهری پیامده‌های منفی زیادی را برای افراد، بهداشت، و سلامتی می‌شتابد. در بررسی‌های پیش‌گیرانه، با افزایش جمعیت شهری و به‌عنوان آستانه ترافیک معابر، یکی از مهم‌ترین دغدغه‌های فکری مردم، پایمان راهحل برای کاهش زمان سفرهای درونشهری است. به‌منظور پایان این راهحل باید شبکه ترافیکی موجود در شهر مدل‌سازی و در حالات مختلف (سطح ترکم ترافیکی) تجزیه و تحلیل شود. برای مدل‌سازی شبکه موتوان از مدل‌های ریاضی گوناگونی استفاده کرد؛ اما مدلی ابدال خواهد بود که قابلیت پایشگویی به ترکم ترافیکی را داشته باشد. یکی از مدل‌هایی که در این زمینه مو توان از آن استفاده کرد، نظریه بازی‌ها است. نظریه بازی‌ها با مدل سازی مثله در قالب یک سیستم سازی در یافتن راهحل و تجزیه و تحلیل آن دارد. به برای ذکر، این نظریه را می‌توان نظریه تصمیم‌گیری دانست که بازی کننده‌ها را برای اتخاذ تصمیم‌های بهینه باید به‌روزرسانی نظریه بازی‌ها مدلهای را ارائه می‌دهد که طبق آن می‌توان استراتژی‌های مختلف را با یکدیگر مقایسه و نتیجه‌گیری بازی را پیش بینی کرد.

با توجه به ترکم موجود در شبکه، در انتخاب مسیری است که کمترین زمان سفر را داشته باشد. انتخاب مسیر به‌پایه نتیجه حالت تعادل (پیچیده) انجام شود؛ به‌طوری که علاوه بر برطرفی شدن نیازهای رانندگان، شبکه موجود در ارای دارای بازدهی مناسب می‌باشد. از این‌رو، می‌توان این شرایط را به یک یکپارچه تشییع کرد که راهندازی موجب در شبکه بازی کنندگان هستند و مجموعه اقدامات (استقلالی) که هر بازیکن قادر به انجام آن است، در انتخاب مسیرها خلاصه می‌شود. هدف برای کننده در این بازی‌ها به‌دست آوردن بهترین نتیجه (کمترین زمان سفر) است که ممکن است توسط اقدامات دیگر بازی کنندگان تحت تأثیر قرار گیرد؛ یکگونه که می‌توان گفت این بازی گروهی است. برای کننده باید همزمان تصمیم‌هایی (انتخاب مسیر) بگیرد؛ البته با آگاهی از این موضوع که نتیجه نهایی به تصمیم‌های مشارکت آنها وابسته است. بهترین نتیجه بازی (دست‌بایی هر

1. traffic congestion
2. game theory
بازی کننده به کوتاه‌ترین مسیر زمین بدهست می‌آید که تمام باری کننده‌گان به بهترین نتایج خود برسند. این موضوع با برقراری تعادل (تعادل نش) میان انتخاب‌های باری کننده‌گان مسیر خواهد شد.

نتایج به‌دست‌آمده از حل (تجزیه و تحلیل) بازی در سیستم‌های اطلاعاتی گوناگون بررسی می‌شود؛ اما از اینجا که شبکه ترافیکی در هر مکان گستردگی می‌شود، برای مدل‌سازی و تحلیل آن نیاز به سیستم اطلاعاتی است که قابلیت پردازش داده‌های مکانی (جغرافیایی) را داشته باشد، سیستم اطلاعات جغرافیایی (GIS) امکان جمع‌آوری، ذخیره‌سازی، تجزیه و تحلیل، و بازیابی این نوع داده‌ها را فراهم می‌کند؛ بنابراین با به‌کارگیری آن می‌توان نتایج به‌دست‌آمده از مدل‌سازی و تحلیل شبکه‌های ترافیکی به‌کمک نظریه بازی‌ها را بررسی کرده و با استفاده از قابلیت‌های آنالیز شبکه در محیط GIS مسیرهای بهینه را باقی‌گذاری می‌کند. با بیانی دیگر، امکان تضمین کردن بهینه را از طریق قابلیت مدیریت پایگاه‌ها داده، تماشای گرافیکی، تجسم کاربرδ‌ها، اندازه‌گیری‌های زمینی و مکانی پیچیده ترافیک و کوتاه‌ترین مسیرهای به‌دست‌آمده فراهم می‌آورد (دلارو و همکاران، 1384:2).

1- پیشینه تحقیق

در ایران تاکنون دریافت مدل‌سازی شبکه‌های ترافیکی با استفاده از نظریه بازی‌ها پژوهشی انجام نشده است؛ در حالی که در کشورهای دیگر نمونه‌های زیادی از مدل‌سازی این گونه شبکه‌ها با استفاده از مدل‌های بازی و به‌کارگیری روش‌های متنوع جهت بهینه‌سازی آن‌ها (شبکه‌ها) مشاهده می‌شود (Hollander & Prashker, 2006; Zhang Et al., 2010، مشابهه) که در ادامه بی‌رغمی از آن‌ها اشاره می‌شود.

واردراپ ۳(1952) اولین مدل باری میان رانندگان حاضر در یک شبکه ترافیکی را طراحی کرد، در این باری، رانندگان باری کنندگان هستند و مسیرهای موجود در شبکه مجموعه استراتژی‌های هر باری کننده در نظر گرفته شده است، رفتار باری کنندگان به صورت غیرتعادلی

1. nash equilibrium
2. Geographic Information System
3. Wardrop
4. non-cooperative
(عده همکاری با یکدیگر) بهره و هر یک کننده می‌کوشد با انتخاب بهترین میری، زمان سفر
(تابع در تراکم ترافیک) خود را به حداقل رساند.
روزنالج (1973) در تحقیقی مشابه به مدل‌سازی مسئله تخصیص ترافیک در قالب یک
بازی میان رانندگان یک شبکه پرداخته است. در این پژوهش، تعادل نش حاصل از
استراتژی‌های خالص بازی به‌عنوان راه‌حل این مسئله معرفی شده است.
فیسکا (1984) اولین مدل بازی میان مجموعه‌ای از رانندگان و یک مقدار استاندارد در شبکه
را طراحی کرده است. در این بازی، اهداف بازی کننده (رانندگان- مقدار استاندارد) به‌ترتیب،
اختیار بهترین میری (جهت کاهش زمان سفر) و کاهش زمان سفر در سرتابش شبکه (از طریق
کنترل تقاطعها) است. فیسکا در تحقیق خود به نظریه‌ای میان مدل‌های بازی غیرتعادلی نش
و استاکلبرگ 4 پرداخته و با بهره‌گیری از تبیین، مدل بازی برای بهبود مسئله کنترل سیگنال در
یک شبکه ترافیک را طراحی کرده است.
بن-آکیوا و چن (1998) مسئله کنترل و تخصیص ترافیک را با یکدیگر ترکیب، و آن را
در قالب بازی‌های غیرتعادلی میان کاربران (رانندگان) و مقدار مسئول شبکه بررسی کرده‌اند.
و Stackelberg، Cournot، Monopoly مدل‌سازی مسئله تخصیص کنترل در قالب مدل بازی
ارائه شده است.
بل (2000) به طراحی یک بازی دوفرزندی غیرتعادلی و با مجموع صفر پرداخته است. این
بازی میان کابر شبکه (رانندگان) و موجودیت باعثون «شیطان» (عامل خارجی) انجام می‌شود.
اهمایی احتمال دریافت می‌گیرد (زمان سفر) و انتخاب بهترین میری جهت کاهش هزینه سفر رانندگان است. در این
تحقیق، از تعادل نش حاصل از استراتژی‌های مخلوط بازی به‌منظور اندازه‌گیری عملکرد شبکه
و ایجاد روت‌های جهت ارزیابی اعتماد‌یابی آن استفاده شده است.

1. Rosenthal
2. Fisk
3. Stackelberg
4. Ben-Akiva & Chen
5. Bell

138
فالدنی و یو (2004) برای حل مسئله جریان ترافیکی، دو مدل باریک یکی میان رانندگان شبکه و دیگری میان رانندگان و مدل مناسب شبکه ساخته‌اند. در این باریک، رانندگان (رفساز رانندگان شبکه در قالب سیستم‌های جانشین‌سازهای 2 بررسی شده است) به صورت غیرتعاونی با یکدیگر رقابت می‌کنند و با انتخاب بهترین مسیر می‌کوشند. زمان سفرشان را کاهش دهند.

در مقابله، مدل منسوب شبکه در تلاش است از طریق تنظیمات سیگنال، زمان سفر را در سنتاس شبکه کاهش دهد. مدل باریک اول به عنوان مسئله تخصیص و مدل باریک دوم به عنوان مسئله کنترل در نظر گرفته و در قالب یک مدل ترکیبی (تخصیص-کنترل) بررسی شده است.

گاو و سان (2007) به رطاحی یک باریک تعبیه‌یافت از تعدادی نش میان مجموعه‌ای از مسافران و ایبان‌های یک شبکه حمل‌ونقل شهری پرداخته‌اند. در این باریک کلاسیک، مسافران برای کاهش هزینه‌ها به صورت غیرتعاونی، مستقل و با آگاهی کامل به انتخاب بهینه مسیر و حالت سفر خود پرداخته و در مقابله، ایپاتوره‌ها به‌دینال افزایش سود خود از طریق تأمین حالات سفر برای مسافران هستند. در این تحقیق، براساس اصل تعادل اقتصاد عمومی، مدل تجاری جهت پیش‌بینی هم‌زمان چگونگی انتخاب بهینه مسیر و حالت سفر مسافران، با توجه به عملکرد ایپاتوره‌ها در سیستم حمل و نقل عمومی شهری رطاحی شده است.

نتکن درخور توجه در تمام مطالعات این است که نتایج تجربی و تحلیل باریک‌های GIS اطلاعاتی اطلاعاتی مانند سیستم‌های اطلاعاتی جغرافیایی (GIS) بررسی نشده‌اند. بنابراین، در این مقاله می‌کوشیم با مدل‌های شبکه‌های ترافیکی توسط نظریه باریک‌های GIS به کامیابی ترافیک و بهینه‌سازی شبکه‌های ترافیکی پردازیم.

2- باریک نرمال

این فرم از معمولی برخی فرم‌های یک باریک است؛ به طوری که N B A C (مقدار کننده) از N N یک مقدار داشت (2) بازی کننده، آم دارای استراتژی (متغیر تصمیم گیری)
است A_{i} ممکن است محدود و گستره (به فرم عمول
$A_{i} \leq m_{i}$) با نامحدود و پیوسته (از یک فضای \mathbb{R}) باشد، ضریب بر این است که
استراتژی‌ها از طریق در فرم نرمال، برای هر باری کننده مشخص به داده و مفتوح به نتیجه‌ای یا از
تصمیم‌گیری به‌صورت یک تابع f_i مشخص است. نتایج f_i برای هر باری کننده مشترک از
تصمیم‌های خود و درگیر باری کننده‌اند به این صورت خواهد بود:

$$f_i : f_i(X_1, X_2, \ldots, X_N) ; \quad 1 \leq i \leq m_i$$

بایزی کننده‌اند به‌طور همزمان و بدون همکاری قبلی (غیرتعوینی) به تصمیم‌گیری می‌پردازد.
در حالی که هدف هرکدام از آنها به‌همه‌سازی f_i خواهد بود. بنابراین، مسئله برای بایزی کننده آم
شامل مشخص کردن آن استراتژی از استراتژی‌های X_i است که موجب ارزش بهینه ممکن
برای f_i می‌شود. در مجموع، برای N بایزی کننده، مسئله شامل دسترسی به یک نقطه تعادل
(تعادل نش) است؛ به‌گونه‌ای که یک ترکیب از استراتژی‌های X_i ممکن است بنابراین ممکن
نمای بایزی کننده در حد ممکن (بهترین وجو) تأمین شود و انتخاب از آن نقطه تعادل
همه‌ای برخی بایزی کننده شود؛ به این معنای که انتخاب هر استراتژی ارزشی هر بایزی کننده جز
استراتژی‌های تعیین شده در نقطه تعادل، موجب زیان یا خواهد شد (اصغیری، 1389: 266).

3 - مدل بایزی پیشنهادی

در این مدل، بایزی N نفره نرمال، محدود و غیرتعوینی Γ با سارکیزی زیر ارائه شده است:

یک کارخانه برای راهاندازی سریع تر خط تولید خود از جنین شرکت تولیدی درخواست
خريد و ارسال مواد اولیه کرده است. از آنجا که نیاز کارخانه به مواد اولیه بسیار فوری است،
mقرر شده فقط بار اولین خودرویی که به کارخانه می‌رسد، تحولی گرفته و به راهنده آن پدایش
داده شود و بار رانندگانی که با تأخیر (نسبت به اولین رانده) به کارخانه می‌رسند، تحولی
گرفته نمی‌شود؛ در نتیجه رانده‌ای که بتواند با انتخاب بهترین یا مصرف (سیرین به‌ینه)، در کمترین
زمان ممکن یکی از رانندگان دیگر به کارخانه برسد، پیروز این باری خواهد بود.
13 - ساختار بازی \(\Gamma \)

\[
\Gamma = (N, \{S_i\}_{i \in \mathbb{N}}, \{f_i\}_{i \in \mathbb{N}})
\]

رابطه ۱

در این بازی، \(N \) مجموعه‌ای از بارزی‌کننده‌ها \(S_i \) فضای محدود استراتژی‌های خالص \(1 \) بازی کننده قام \(f_i \) تابع نتیجه بازی کننده قام است. در شکله‌ترافیکی موجود، رانندگان هم‌چنین بازی‌کننده‌ای این بازی اندازه‌یت و فضای استراتژی‌های خالص آنها شامل مسیرهای موجود در شبکه است. تابع نتیجه برای هر راننده، زمان سفر است که با انتخاب یک مسیر از مسیرهای موجود در شبکه به‌دست می‌آید. در این بازی، رانندگان به‌صورت غیرتعاونی و با هدف به‌دست آوردن کمترین زمان سفر - انتخاب مسیر به‌هیچ‌یک راه رساندن از مبدأ به مقصد مورد نظر (کارخانه‌ای) با هم رقابت می‌کنند.

2-3 - بررسی ساختار بازی

اگر \(N = \{1, 2, \ldots, n\} \) باشد، فضای ترکیبات احتمالی استراتژی‌های خالص در بازی برابر با \(m \) خواهد بود، در نتیجه می‌توان گفت \(S = \prod_{i \in \mathbb{N}} S_i \) خالص باشد. تعداد استراتژی‌های خالص \(m \) تعداد ترکیبات استراتژی‌های خالص بازی \(M \) از قبیل \(\prod_{i=1}^{n} m_i \) خواهد بود. ترکیبات استراتژی‌های خالص بازی را می‌توان به این صورت نشان داد:

\[
(S_1, S_2, \ldots, S_{n-1}, S_n) := 1
\]

\[
(S_1, S_2^2, \ldots, S_{n-1}^2, S_n^2) := 2
\]

\[
\vdots
\]

\[
(S_m^1, S_m^2, \ldots, S_{m-n+1}^m, S_{m-n}^m) := (M - 1)
\]

\[
(S_m^1, S_m^2, \ldots, S_{m-n+1}^m, S_m^n) := M
\]

رابطه ۲

استراتژی خالص قام بازی کننده قام

1. pure strategies
1. payoff matrix

\[F = \begin{pmatrix} F_1 & F_2 & \cdots & F_m \\ F_1 & F_2 & \cdots & F_m \\ \vdots & \vdots & \ddots & \vdots \\ F_1 & F_2 & \cdots & F_m \end{pmatrix} \]

2. mixed strategy
رابطه 4

یکانگر نمایی اقتصادی مخلوط تشكل بانه از تمام بازی کننده‌ها، جز بازی کننده، قام است. با یافتن تعادل نش موجود در بازی می‌توان به اقتصادی بهینه‌های مخلوطی از بازی کننده‌ها، دست یافتن، به بیانی دیگر، با بررسی تعادل نش موجود در بازی Γ می‌توان مسیر و زمان سفر بهینه‌های مخلوطی از رانندگان حاضر در شبکه ترافیکی را به دست آورد.

3-4-3. بیان‌سازی بازی Γ

در روند بیان‌سازی مدل بازی Γ از مدل بهینه‌سازی غیرخطی استفاده شده است، در این مدل، تعادلات منجر به مجموع تعادلات اقتصادی، خاص بازی و تعادل بازی کننده‌ها است. همچنین، قبود و توابع هدف به صورت چندجمله‌ای در نظر گرفته شده است. در مسئله بهینه‌سازی پایان‌پذیری به دنبال به‌حداث و تفاوت اختلاف میان نتیجه‌های بهینه و نتیجه‌های به دست آمده از یک ترکیب اکثریت مخلوط بازی Γ هستم که از این طریق می‌توان به تعادل نش موجود در بازی دست یافتن که بیانگر اقتصادی بهینه‌ای بازی کننده‌ها است. مسئله بهینه‌سازی به این صورت است:

\[
\begin{align*}
\text{Min} & \quad z(x) \\
\text{s.t.} & \quad g(x) \leq 0 \\
& \quad h(x) = 0 \\
& \quad x_i \geq 0 \quad \forall i = 1, 2, \ldots, m \\
& \quad x_i \text{ نامحدود} \quad \forall i = m+1, m+2, \ldots, m+n
\end{align*}
\]

\[
\begin{align*}
z(x) &= \sum_{i \in N} \left(\beta_i - f^i(\sigma) \right) \\
g(x) &= f^i(\sigma^{-1}, \sigma_j^i) - \beta_i^j \quad \forall j = 1, 2, \ldots, m^i, \forall i \in N \\
h(x) &= \sum_{j=1}^{m^i} \sigma_j^i - 1 \quad \forall i \in N
\end{align*}
\]
برای پیاده‌سازی روند حل مسئله بهینه‌سازی، از برنامه‌نویسی در نرم‌افزار MATLAB استفاده شده است. در این زمینه، برنامه ارائه‌شده قادر به حل بازی Γ خواهد بود و با معرفی ماتریس سطحی (بردا) در برابر تعداد استراتژی‌های خالص هر بازی کننده (S) و ماتریس نتیجه‌بازی کننده (F) براساس ترکیبات استراتژی‌های خالص بازی - می‌توان به ماتریس شامل استراتژی‌های مخلوط بازی کننده تحت تعداد نش بازی (Prob) دست بایت. به بیانی دیگر، این ماتریس (Prob) یک احتمال (بردا) انتخاب یک استراتژی خالص توسط یک بازی کننده است و این احتمال استراتژی بهینه بازی کننده در تعداد نش بازی را مشخص خواهد کرد.

3- شبیه‌سازی شبکه ترافیکی برای اجرای مدل بازی Γ

در این مرحله، از گرافی جهت‌دار با 12 پال و 9 گره استفاده شده است (شکل 1). بنا به گره‌های این گراف به ترتیب بیانگر لینک‌های شبکه و زوج مبدا-مقصد به کاربران (رئس‌گان) است.

![شکل 1: شبکه ترافیکی شبیه‌سازی‌شده](image)

1. Origin-Destination
تخصیص زمان سفر به هریک از لینک‌های شبکه در دو حالت ثابت و متغیر در نظر گرفته شده است. زمان سفر در حالت متغیر، تابعی از تراکم ترافیکی و تعداد خودروهای حاضر در هر لینک است. به گونه‌ای که با افزایش تعداد خودروها، زمان سفر افزایش می‌یابد. در محاسبه زمان سفر مسیرهای موجود در شبکه جهت اتصال مبدا-مقصد، مورد نظر، فقط تعداد خودروهای موجود در لینک‌های با زمان سفر متغیر، اهمیت دارد (جدول ۱).

<table>
<thead>
<tr>
<th>لینک</th>
<th>زمان سفر (دقيقة)</th>
<th>تعداد خودرو</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>x/100</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>x/100</td>
<td>4000</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>x/100</td>
<td>4000</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>x/100</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

در نظر گرفته شده است (شکل ۲).
شرح مسیرهای موجود در شبکه جهت اتصال مبدا - مقصد مورد نظر در جدول شماره دو آمده است.

جدول ۲ مسیرهای موجود در شبکه جهت اتصال مبدا - مقصد مورد نظر

<table>
<thead>
<tr>
<th>مسیر</th>
<th>زمان سفر (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12510</td>
</tr>
<tr>
<td>b</td>
<td>381112</td>
</tr>
<tr>
<td>c</td>
<td>14912</td>
</tr>
<tr>
<td>d</td>
<td>14710</td>
</tr>
<tr>
<td>e</td>
<td>36912</td>
</tr>
<tr>
<td>f</td>
<td>36710</td>
</tr>
</tbody>
</table>

۴ - یافته‌ها

۴-۱ - اجرای مدل بازی و استخراج نتایج

به منظور اجرای (حل) این مدل، به عنوان نمونه، تعادل بازی کننده‌گان برای با ۳ و تعادل استراتژی‌های موجود برای هریک از آنها برای ۶ در نظر گرفته شده است؛ درنتیجه ۳ وانتنه‌ای وارد شدن در شبکه ترافیکی یادشده، در حالی با یکدیگر رقابت می کنند که هریک قادر به
انتخاب یک مسیر از میان ۶ مسیر موجود در شبکه برای رسیدن به مقصد خود (کارخانه) خواهد بود (سرعت حرکت رانندگان ثابت فرض شده است).

برخاس برای برنامه‌آزمایش حالت دوم جدول ۳ تهیه و اجرای برنامه، خروجی مورد نظر مطابق جدول شماره سه خواهد بود.

<table>
<thead>
<tr>
<th>انتخاب (فرآیند)</th>
<th>انتخاب استراتژی</th>
<th>انتخاب استراتژی</th>
<th>انتخاب استراتژی</th>
<th>انتخاب استراتژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بازیانکننده راننده سوم</td>
<td>بازیانکننده دوم</td>
<td>بازیانکننده اول</td>
<td>بازیانکننده راننده اول</td>
<td>بازیانکننده راننده اول</td>
</tr>
<tr>
<td>انتخاب استراتژی</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
</tr>
<tr>
<td>انتخاب استراتژی</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
<td>۰.۵</td>
</tr>
<tr>
<td>انتخاب استراتژی</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
<td>۰.۰</td>
</tr>
</tbody>
</table>

برای جدول شماره سه، استراتژی‌های بهینه‌ای بازی Γ استراتژی‌های اول و دوم هستند. در تعادل نش به‌ست‌آمده، بازی کنندگان با انتخاب (فرآیند) برای این استراتژی‌ها را انتخاب می‌کنند. درواقع، تعادل نش بازی Γ در دو صفحه این نتیجه است که بازی کننده جهت دست‌بایی به نتیجه مورد نظر باید از میان دو استراتژی (استراتژی اول و دوم) بکنی را برگزیند. به بیانی دیگر، با حل و بافت تعادل نش بازی Γ مسیرهای بهینه موجود در شبکه ترافیکی جهت کاهش زمان سفر رانندگان مشخص شده است، با توجه به تعداد مسیرهای
بهینه و احتمالات انتخاب این مسیرها، زمان سفر رانندگان براساس ترکیبات مسیرهای بهینه به شرح جدول شماره چهار است.

جدول 4 زمان سفر رانندگان براساس ترکیبات مسیرهای بهینه

<table>
<thead>
<tr>
<th>ترکیب مسیر</th>
<th>زمان سفر (دقيقة)</th>
<th>رانندگه دوم (D2)</th>
<th>رانندگه سوم (D3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,a,a</td>
<td>65.03</td>
<td>65.03</td>
<td>65.03</td>
</tr>
<tr>
<td>a,a,b</td>
<td>65.02</td>
<td>65.02</td>
<td>65.01</td>
</tr>
<tr>
<td>a,b,a</td>
<td>65.02</td>
<td>65.01</td>
<td>65.02</td>
</tr>
<tr>
<td>a,b,b</td>
<td>65.01</td>
<td>65.02</td>
<td>65.02</td>
</tr>
<tr>
<td>b,a,a</td>
<td>65.01</td>
<td>65.02</td>
<td>65.02</td>
</tr>
<tr>
<td>b,a,b</td>
<td>65.02</td>
<td>65.01</td>
<td>65.02</td>
</tr>
<tr>
<td>b,b,a</td>
<td>65.02</td>
<td>65.02</td>
<td>65.01</td>
</tr>
<tr>
<td>b,b,b</td>
<td>65.03</td>
<td>65.03</td>
<td>65.03</td>
</tr>
</tbody>
</table>

با توجه به ستاره‌ی باری \(\Gamma \) مبنی بر پروز شدن یکی از رانندگان - ترکیبی از مسیرهای بهینه (ترکب 4 جدول) که در آن یکی از رانندگان برای راهنمایی رانندگه اول (D1) روبرو آورده و دیگران به مفاضد مورد نظر (کارخانه) می‌رسد، در محیط GIS تحلیل و تجزیه شده است.

GIS

4.2- تجزیه و تحلیل نتایج در محیط ArcGIS

برای تجزیه و تحلیل نتایج بدست آمده از حل ۱۰ فاز از نرم‌افزار ArcGIS استفاده شده است. در این نرم‌افزار به‌کمک برنامه کاربردی Model Builder و بهره‌گیری از ابزار Network Analyst مدول جهت تحلیل شرکت ترافیکی ارائه شده که در آن، مسیر بهینه رانندگه مورد نظر (رانندگه اول) برای پروز شدن در باری، با توجه به مسیرهای انتخابی رانندگان دیگر مشخص می‌شود (شکل 3).
شکل ۴ مسیر بهبودی راننده اول
در اجرای مدل مسیر‌پایی فرض شده که مسیر انتخابی راننده دوم و سوم مسیر b است، بر این اساس باوار کردن پارامترها و اجرای مدل مسیر بهینه راننده اول مشخص می‌شود (شکل 4). راننده اول با انتخاب این مسیر می‌تواند در کمترین زمان ممکن به مقصد مورد نظر برسد و پیروز بازی شود.

5 - نتیجه

در این تحقیق، مدلی برای کاهش ترافیک در شبکه‌های شهری طراحی شد، با توجه به تراکم موجود در مسیر‌های شبکه - که یکی از مهم‌ترین عوامل در برنامه‌ریزی ترافیک است - از مدلی برگرفته از نظریه بازی‌ها برای مدل‌سازی و تجزیه و تحلیل شیکه‌های ترافیک استفاده شد. به همین منظور، یک مدل بازی (براساس فرم نرمال از بازی‌ها) برنامه شد و با برنامه‌نویسی در نرم‌افزار Matlab پرتاب‌های جهت حل (یافتن تعداد نش) بازی تنظیم شد. پرتاب اجرای این برنامه (1) و آزمون آن، تعداد بازی کنندگان (رانندگان) و استراتژی‌های هریک از آن‌ها (مسیر‌های موجود در شبکه جهت اتصال مبدا-مقصد مورد نظر)، به ترتیب برای با 3 و 6 درنظر گرفته شد. از بررسی نتایج اجرای برنامه در فعالیت شد که خروجی مربوطه از صحت و مطلوبیت کامی برخوردار است؛ زیرا در تعادل نش به دست آمده، کوتاه‌ترین مسیر‌های موجود در شبکه به‌عنوان مسیر‌های بهینه به رانندگان پیشنهاد شده است. با افزایش چشمگیر تعداد رانندگان و مسیر‌های موجود در شبکه، زمان لازم جهت انجام محاسبات توسط برنامه نامیترده.

تا حد زیادی افرازی یک‌پا خواهد کرد.

با توجه به آنچه بیان شد، بهره‌گیری از نظریه بازی‌ها در مدل‌سازی شبکه‌های ترافیکی (شهری) بسیار کاهش زمان و هزینه سفر کاربران می‌شود و کاهش تراکم موجود در مسیرها به‌هیچ‌صورت باید نمی‌باشد. واکنش داشته، از سوی دیگر، تلفیق نظریه بازی‌ها و GIS به‌صورتی را برای تحلیل‌های شبکه از این‌جایی می‌باشد و نمایش مسیر بهینه فراهم می‌آورد و توصیه‌گیرندگان را در میدان و سامان‌دهی بهتر شبکه‌های ترافیکی یاری می‌رساند.

در پایان، یادآوری می‌شود که با توجه به ساختار مدل بازی ارائه‌شده و روش به کارگیری در حل بازی (حل مستقیم بهینه‌سازی و بافتند تعداد نش) از ارزیابی و مقایسه نتایج
6 - منابع

